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SIMULTANEOUS APPROXIMATION BY GREEDY ALGORITHMS

D. LEVIATAN! AND V.N. TEMLYAKOV?

ABSTRACT. We study nonlinear m-term approximation with regard to a redundant dictionary
D in a Hilbert space H. It is known that the Pure Greedy Algorithm (or, more generally, the
Weak Greedy Algorithm) provides for each f € H and any dictionary D an expansion into a
series

F=>ci(Hei(f), @i(fleD, j=1,2,...

Jj=1

with the Parseval property: ||f||?> = > leg (f)|?. Following the paper of A. Lutoborski and
the second author [21] we study analogs of the above expansions for a given finite number of
functions f1,..., fV with a requirement that the dictionary elements ¢; of these expansions
are the same for all f%, i = 1,..., N. We study convergence and rate of convergence of such
expansions which we call simultanious expansions.

1. INTRODUCTION

In this paper we study nonlinear approximation. The basic idea behind nonlinear ap-
proximation is that the elements used in the approximation do not come from a fixed linear
space but are allowed to depend on the function being approximated. The classical problem
in this regard is the problem of m-term approximation where one fixes a basis in the space,
and seeks to approximate a target function f by a linear combination of m terms from that
basis. When the basis is a wavelet basis or a basis of other waveforms, then this type of
approximation is the starting point for compression algorithms. An important feature of
approximation using a basis ¥ := {9}, }22; of a Banach space X is that each function f € X
has a unique representation

(1.1) F=> celf)en
k=1

and we can identify f with the set of its coeflicients {ci(f)}3>;. The problem of m-term
approximation with regard to a basis has been studied thoroughly and rather complete
results have been established (see [2], [4] [6], [9] [11], [15], [19] [23], [25] [27], [31], [34] [37],

1Part of this work was done while the first author visited the University of South Carolina in January 2003.
2This research was supported by the National Science Foundation Grant DMS 0200187 and by ONR Grant
N00014-96-1-1003.



2 D. LEVIATAN AND V.N. TEMLYAKOV

[42], [43]). In particular, it was established that the greedy type algorithm which forms a
sum of m terms with the largest ||cx(f)¥r||x out of expansion (1.1), in many cases almost
realizes the best m-term approximation for function classes ([5]), and even for individual
functions ([35], [23]).

Recently, there has emerged another more complicated form of nonlinear approximation
which we call highly nonlinear approximation. It takes many forms but has the basic
ingredient that the basis is replaced by a larger system of functions that is usually redundant.
We call such systems dictionaries. Redundancy on the one hand offers much promise for
greater efficiency in terms of approximation rate, but on the other hand gives rise to highly
nontrivial theoretical and practical problems. Approximation with regard to a redundant
dictionary has been studied in [1], [3], [4], [7], [8], [12] [14], [16] [18], [24], [28] [30], [32],
133], [38] [42] and other papers. We refer the reader to surveys [4] and [42] for a discussion
of approximation results for redundant dictionaries.

We recall some notations and definitions from the theory of approximation with regard
to redundant systems. Let H be a real Hilbert space with an inner product (-,-) and the
norm ||z|| := (z,z)/2. We say a set D of functions (elements) from H is a dictionary if
each g € D has norm one (||g|| = 1) and spanD = H. In [7], the second author and DeVore
studied the following greedy algorithm. If f € H, one lets g = g(f) € D be the element
from D which maximizes |(f, g)| (of course for this one makes an additional assumption that
such a maximizer always exists), and define

(1.2) G(f) = G(f,D) := (f,9)9,
and
(1.3) R(f):= R(f,D) := f — G(f).

Pure Greedy Algorithm (PGA). Let Ry(f) := Ro(f,D) := f and Go(f) := 0. Then,
for each m > 1, we inductively define

Gm(f) 1 = Gu(f, D) = Gm-1(f) + G(Rm—1(f))
Ry(f) i = Ru(f, D) == f — Gm(f) = R(Bm-1(f))-

For a given dictionary D we can introduce a norm associated with D as

|fllp := sup |[(f, g)l-
geD

The Weak Greedy Algorithm (see [39]) is defined as follows. Let the sequence 7 = {tx}72 4,
0 < tx < 1, be given.

Weak Greedy Algorithm (WGA). Let fj := f. Then for each m > 1, we inductively
define:

1. Let ¢], € D be any element satisfying

[{Frm1>Pm)| = tml 1|5
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2.
fn = Frc1 — (frmm1, Pm) P
3. .
G (f,D) = S (fy o]l
j=1
We note that in a particular case tx = ¢, £ = 1,2,..., this algorithm was considered in

[17]. Thus, the WGA is a generalization of the PGA in the direction of making it easier
to construct an element ¢] at the m-th greedy step. Note that the WGA includes, in
addition to the first (greedy) step, a second step (see 2., 3. in the above definition) where
we update the approximant by adding to it, the orthogonal projection of the residual f;
onto 7 . Therefore, the WGA provides for each f € H an expansion into a series (a greedy
expansion)

(1'4) f ~ ch(f)@;', Cj(f) :_< ]T 1)‘P3>

j=1

In general it is not an expansion into orthogonal series but it has some similar properties.
The coefficients ¢;(f) of an expansion are obtained by the Fourier formulas with f replaced
by the residuals f7_;. It is easy to see that

(1.5) £l = 1l = lem ().

Therefore, for a convergent greedy expansion we get an analogue of the Parseval formula
for orthogonal expansions:
oo
2 2
AP =" lei(f)
=1

The problem of convergence of the WGA is now settled in the following sense. In [40], a
class V of sequences it has been introduced, such that the condition 7 ¢ V is necessary and
sufficient for the convergence of a Weak Greedy Algorithm with weakness sequence 7 for
each f € H, and all Hilbert spaces H and dictionaries D (see [40] for the history of this
problem). For a general dictionary D, we define the class of functions

A{(D,M):={f€H:f=> cpwp, wp€D, #A<ooand Y |eg| <M}
keA keA

and we define A; (D, M) as the closure (in H) of A(D, M). Furthermore, we define A; (D)
as the union of the classes A;(D, M) over all M > 0. For f € A;(D), we define the norm
| fl.4,(D,00), as the smallest M such that f € Ay (D, M).

For M =1 we denote A;(D) := A;(D,1). The rate of convergence of the PGA and the
WGA for elements from A;(D) has been studied in [7], [24], [39], [28], [41]. The following
result has been obtained in [39].
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Theorem 1.1. Let D be an arbitrary dictionary in H. Assume T := {tx}32; is a nonin-
creasing sequence. Then for f € A1(D) we have

m

(1.6) If =GR (£, D) < (14D t7)~tm/2EHtm),

k=1

While Theorem 1.1 is valid for nonincreasing weakness sequence, we obtain in Section 2
an upper estimate for the rate of convergence of the WGA for a class of weakness sequences
which includes nonmonotone sequences.

Theorem 1.2. Assume a weakness sequence T = {t;}32; has the property that there are a

natural number n, and a real number 0 <t < 1, such that the inequality

(I+1)n

Yt >t

k=Iln+1

holds for alll =0,1,2,.... Then if f € A1(D), then for any 0 < 6 < 1 we have

|72 < (3n/0%) 75 (14 12) =%

with o :=t(1 —9).

We also prove in Section 2 that Theorem 1.2 is sharp in a certain sense.

The main purpose of this paper is to construct greedy type (1.4) expansions for a given
finite set of elements f!,..., fV, simultaneously with the same sequence {¢7} for all fe,
i = 1,...,N. The first result in this direction has recently been obtained in [30]. The
Vector Greedy Algorithms that are designed for the purpose of constructing mth greedy
approximants, simultaneously for a given finite number of elements, have been introduced
and studied in [30]. Namely,

Vector Weak Greedy Algorithm (VWGA). Let a vector of elements fte H,i=
1,...,N be given. We write f7 := f. Then for each m > 1, we inductively define:

1. Let 92" € D be any element satisfying

max [(f,"7, o) > tn max || £,

"1l

f:r,LU,T = :;;:71-_<f'r1nv71-7§0m >()DZ’,LT7 i:]'""’N’

m

’UT i ’L’UT ’UT ’UT .
Gy (f,D g 1wy e, i=1,...,N.
Jj=1
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It was proved in [30] that under certain conditions on 7 the VWGA converges. Therefore
VWGA provides the convergent expansions

- Zb;gja gj € D7

with the property
I7411* = E:Ib’l2 i=1,...,N.

The following estimate of the rate of convergence of VWGA has been obtained in [30].

Theorem 1.3. Let D be an arbitrary dictionary in H. Assume 7 := {ty}32, tx = t, k =
1,...,0 <t < 1. Then for any vector of elements f*,... , fV, fi € A{(D),i=1,...,N,
we have

N
DI < (N ma?) T N,
=1

We will improve this estimate in Section 3, proving

Theorem 1.4. Let D be an arbitrary dictionary in H. Assume 7 := {t;}32,, tp, =t, k> 1,
0 <t < 1. Then for any vector of elements f1,...  fN, ff € A1(D),i=1,...,N, we have

N
> Iy
=1

In addition to the VWGA we will consider in Section 3 two modifications of the VWGA.
The modifications differ from the VWGA only in the first step. We modify this step in
the following two ways. In the first step of the Simultaneous Weak Greedy Algorithm 1

(SWGA1)
1.(SWGA1) We look for any ¢*1'™ € D satisfying

< N2(1 + mt?/N)n17%5 |

1/2 ; ; ;
(1.9) Z| P > b max | iyl iy = SR

In the first step of the Simultaneous Weak Greedy Algorithm 2 (SWGA2)
1.(SWGA2) We look for any 27" € D satisfying

1 1 2 i 1,82,T
(1'10) Z| 15@13737- ) /2 > 7fm Sug Z| m—129 / ’ 1ln—1 = fn’lfi .
S i=1

Clearly, any ¢, satisfying (1.8) or (1.10) also satisfies (1.9). Thus, any upper estimate for
the SWGAL1 yields an upper estimate for both the VWGA and the SWGA2. We prove in
Section 3 an extension of Theorem 1.4 which holds for both variants of the Simultaneous
Weak Greedy Algorithm (see Theorem 3.1).
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2. RATE OF CONVERGENCE OF WGA
The following lemma is due to [39].

Lemma 2.1. Let {a,,}35_, be a sequence of nonnegative numbers satisfying the inequalities

ag < A, am < Gm_1(1 =2 apm_1/A), m=1,2,...,
with 0 <t <1, k=1,2,.... Then for each m we have
am <AL+ )7
k=1

We need the following modification of this lemma.

Lemma 2.2. Let A>2 and 0< 3, <1, n=1,2,.... Suppose 1 > x9 > x1 > --- >0,
satisfy the recurrent inequalities
(2.1) Ty < Tp1 — %mi
Then we have
(2.2) T <§A(1+Zm:5)—1 m=1,2
. m = 2 ‘ n Y P
n=

Proof. We will use the following simple inequality
2
(2.3) (1+z) ' <1- 3% 0<a< 1/2.

We rewrite (2.1) in the form

(2.4) zn(1+ B—Xwn) < Tp_1.

Clearly z,,_1 = 0 implies z,, = 0. Thus it suffices to prove (2.2) for nonzero z,,. Using (2.3)
we get from (2.4)

1 _ B _ 1 2
z, 1 < xnl(l + Zna:n) < a:nl — gf,
or 23
%:1 xT_Lil-i___n

This implies

n=1 n=1 n=1
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Finally

g 1+Z[3n . O

We are ready to prove Theorem 1.2

Proof of Theorem 1.2. Denote

A 1= ||f;L||2, Ym = [(fr_1,0m), m=1,2,..., yo:=0.
Recalling (1.5)
A | F A R A~ A kS
which can be rewritten as
(2.5) Am = Q1 — y,zn,

we conclude that y,,, <1, m > 0. Let the sequence {b,} be defined by
(2.6) bo :=n/d, by i =bpm_1+Ym, m=12 ...
Then, evidently, f7 € A;(D,b,,). By Lemma 3.5 of [7], we get

sup |{fr—1:9)| > [l fm—1ll?/bm—1,
g€D

which in turn implies (by the definition of ¢ )

(27) Ym Z tmamfl/bmfb
Denote
(I+1)n
Ty = A, 2= ( Z y,%)l/2 <n'?  and w;:=n 2,
k=In+1

Then (2.5) and (2.6) imply

(E1) T =x — 27,

(E2) Wiyr < Wy + 2,

and (2.7) together with (1.7) and the fact that {z;} is decreasing and {w;} is increasing,
yields

(E3) g > oL
Wi41
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Now, combining (E1) and (E3) it follows that

2
2 [ Ti4+1
Tip1 <z —t (m) )

or

T
Ti4+1 <1 + t2#> <z
Wit

Again by the monotonicity of {w;} we obtain

T i xz
bl <1+t2 l“) < 2L

2 2
Wiy, Wi q

Hence, by Lemma 2.2 with A =2, 8, =t?, n=1,2,..., we have

I

(2.8) o <3(L+1*)7h
Wy
Also, (E1) and (E3) imply
Ti41 S @ — it Ss ;
Wi41
or
(2.9) mﬂ<1+t” >§wh
Wi+1
At the same time (E2) implies
(2.10) w41 < wl(l + zl/wl).

Thus, combining (2.9) and (2.10) we conclude that

zl/wl
2.11 zr (1+t—2—— ) <.
2.11) i (1020 <

Since z; < n/2 and w; > wy == n1/2/5, it follows that z;/w; < d for all I. For a:=t(1 — §)
we apply (2.10) and the inequality

T oo<z<s,

I4+z)*<1l4+ar<1l+t , <
1+ x

to obtain

1wy < xpwp (1 + 2 /w)®
zl/wl a
— " w
1+ zl/wl) !
< zwy* < zowy

< (n'?/6),

<@ (l+t



SIMULTANEOUS APPROXIMATION BY GREEDY ALGORITHMS 9
where in the third inequality we applied (2.11). Hence, by (2.8) we obtain

iI?l2+a <3*(1+ lt2)_°‘m2wl2a

< (3n/6%)*(1 + 1t?)*,

and
x; < (3n/0%)74a (1 + It?) " =a.

This completes the proof of Theorem 1.2. [
An immediate consequence of Theorem 1.2 is

Corollary 2.1. Letn > 2 and 1 < i < n be given, and set

. 1, k=In+i, 1=0,1,2,...,
(2.12) t;:{

0 otherwise.

Then if f € A1(D), we have the upper estimate for the error of the WGA
(2.13)  ||fwl? < (3n/63) e (1 +In~Y) "= = (3n2/6H)Fa(l41) %, 0<d<1,

with a = (1 — §)n=1/2.

Thus, we see that the exponent 3% in (2.13) decreases with n at the rate n~12. We will
show that for the particular case of a weakness sequence of the form (2.12) the dependence
of the exponent &, in

1finl® < C)(1 +1)75

is indeed of order &, < Cn~1/2,

To this end we use the construction of D; from Section 2 of [29]. We begin with the
Equalizer procedure. Namely, let H be a Hilbert space with an orthonormal basis {e; }‘;‘;1
For two elements e;, e;, i # j, and for a positive number ¢ < 1/3 the following procedure is

called ”equalizer” and is denoted E(e;,ej,t).

Equalizer E(e;,ej,t). Set fo :=e; and g1 = aie; — (1 — a%)l/zej with a; := t. Clearly,
llg1|l = 1 and (fo,g1) = t. We define inductively the sequences fi,..., fn; g2,---,9n; and
as > 0,...,any >0, with N determined by the process. Let

2 )1/2

fo=fac1 = {fa1,9009n, and  gni1:=apqre; — (L —ap44) ey,

where a,,4+1 > 0 satisfies
<fnagn+1>:t, n:1,2,....

Note that

(2.14) 1£all* = [l famall® = 22,
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so that we can solve for a,, 11 > 0 as long as N < [t*2]. Writing f,, =: ane; +bype;, it follows
that
Gp = Qp_1 — by, bn = bn—l + t(l - ai)l/Qa n > 27

ap, —bp = ap_1 —bp_1 —tlay + (1 — a2)1/2), n>2,

n

(2.15)

so that, in particular, a,, — b, in decreasing. Also by virtue of the inequality
1<z+(1 _w2)1/2 < 21/2 0 <z <1, we see that

(2.16) U1 — b1 < ap — by, + V2.

We proceed this way as long as

an — bn Z \/ita
arriving at N = Ny, such that
anN—1—byn_1> \/it and ay —by < \/525.
Note that by (2.15) and (2.16),

1 1
2.17 — -1 <N, < —.
(27) LN

At this stage we modify the Nth step as follows. We take gn := 27/2(e; — e;) and define
fv=FfN-1—(fn-1,9N)9N.

It is clear that ay = by, and by virtue of (2.16),
(2.18) t < {(fn_1,9n) < 2t.
It follows from (2.14) and (2.17) that

vl > 1—t+ 22,
and, in turn, by (2.18), we have

1Fn 112 > =l = 482 > || fI° =t — 3¢

Evidently, E(e;, e;,t) is a WGA with respect to the dictionary D(i, j) := {e;, 91,92,..-,9n8},
with the ”weakness” parameter ¢. It is worthwhile to note that the values {oy}, {ar} and
{br}, k =1,..., N, and the stopping stage N, depend only on ¢, and are independent of

the choice of e; and e;. Also, N, increases as t decreases, it is constant for a while and then
jumps up by 1. Thus, we take p > 3, and ¢ = £, 27 K1 < t, < 27H, such that N, = 2K,
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This can be done since by virtue of (2.17), if t = 27 #, then N; < 2#, and if t = 2" # "1, then
N, > 2ut1/2 1 > om,

We define a WGA with respect to the dictionary D; := U(; j)esD(i,]) where S is de-
termined by the equalizer procedures {E(e;, €;,1)}} ;) cs defined above that will be used in

the construction that follows. We begin with f := e; and apply E(es,ez,t), t :=t,. After
N; = 2* steps we obtain g9, ... ,g?vt, and

fl = 61(81 + 62), h:= 26%,

with the property
Y2 =h, h>1—t—3
We now obtain g1, ... ,g%Nt, by applying the equalizers E(e1,es,t) and E(eq,eq,t). Thus
after 2V; additional steps of the WGA, we have
fAi=caler+---+es), c2=4c,
with the property
I£2]1* = 4¢3 = r*.

After p1 iterations we have made M, steps, where
p—1
M, =N Y 2F=2#(2"-1)=n—1,
k=0

and obtained
ff=culer+--+eawm), cp=cyc1.

At the nth step (n = 22# — 2 + 1), we remove c,ean by the PGA step

froo= "= (", ean)eqn
= C“(el + -+ ezu_1), Ci = hH27H,

Indeed,

sup(f“,g> =Cy = <fuae2“>'
geD

We proceed as follows to obtain f#*1. We apply the equalizer procedure E(e1,eaut1,t,),
.y E(ean_1,€uy90 1,t,), thus, we perform 2#(2* — 1) = n — 1 additional steps of the
WGA. We get

1
fth = Cu+1(€1 +-odewm_1+empr o+ equrq),

and we remove ¢, 1e2:_1, to obtain fo,.
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Suppose that at the vth iteration, (v > p + 1), we have arrived at

fMu =c, Zei, c?j:h”Z*”, A,,Z{il < 19 <---<iLV}§ [1,2”].
i€EA,

We begin performing the (v + 1)st iteration by applying the equalizer procedure
E(ei,,eavq1,tu), ..., E(€iy ,e2v420—_1,t,). Thus, we have performed 2#(2* — 1) =n —1
steps of the WGA. Since 2. 1 <'ir,, we remove c,e;, by a PGA as in the nth step. We
now apply E(€i,.,ezvyou,tu), - E(€i, s €aviouti_g,ty), and if dgui1_y < if,_1, We
remove c,€;, _,, and keep going until we can no longer continue. This means that either
the n — 1 st equalizer is applied to the last remaining element in A, , or that we are left with
less than n — 1 elements. In the former case we have arrived at

(2.19) Frhi=ca Y e, o =ht2vT A C 120,
SN

With A := max A, we then remove ¢, y1ey in the nth step, and denote A, 17 := A\ {A} C
[1,27F1]. In the latter case we form equalizers for the remaining elements, and obtain (2.19).
We now perform as many WGA steps of the form

fV+1 — 0<fy+1,€i>6i, 7 < )\,

as needed in order to have a total of n — 1 steps and in the nth step we remove c,1ey. As
a result in both cases, after M, 1 steps, we have

2 lo—v—1 1
M, = vt Z e, Copp=h"T27h AL CL2Y MY AL a] = Loy
1€EAL 41

It is clear that we have removed at most [L, /(2" — 1)] elements e;. Therefore,

24 — 2 1
(220)  Lyp1 >2(Ly, — Ly/(2" — 1) = 1) = 2L, <2u 1 L_> > 2L, (1 — 27+,
and
(2.21) o, 44 ||2 = C,2j+1Lu+1 > h”+12_”L,,(1 — 2_““) = h(1 — 2—u+1)||fMV ||2
Also

Myy1 > M, + (Ly — ([Lo/(2% = 1)]))2* + [Ly/(2* — 1)]
> M, + L,2% — [L, /(2" — 1)](2* — 1) > M, + L, (2" — 2).

Taking into account that

M, =2 —-2¢+1, and L,=2"-1,
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we get by (2.20)
(2.22) M, > (2(1 —27#F1)) T F2mkr(2k —2) > C(n)2%, v > p,
with absolute constant ¢ > 0, since u > 3. After M, steps we have by (2.21)
Fan I* = 27 (L =20 #E0) H| g, |7 = (1 =27yt
> C(w)2 9" > C(p)M, >,

where we have applied the fact that || fa, [|> = h*(1 —27#), and for the last inequality we

used (2.22). Observing that n~1/2 < /227, we conclude that the exponent of the power
rate of decrease of ||faz, || is of order of n=1/2,

3. SIMULTANEOUS APPROXIMATION BY GREEDY ALGORITHM

Given are a Hilbert space H and a dictionary D. For N > 2, let Hy .= H X ---x H, N
times, i.e., the general element in Hy is F := (f1,..., fY), f* € H. It is a Hilbert space
with the inner product

N
(Fu, Fa) == (fF, f5).
k=1

Let Dy be the collection
N

{(alglv"'aaNgN)|gk€D7 Zai:].}
k=1

Then it is easy to see that spanDy = Hpy. (Actually, Hy is spanned even by linear
combinations of elements of the form (0,...,0,¢,0,...,0), where g € D is arbitrary and is
in arbitrary position.) Also, all elements in Dy are normalized.

We begin with Fy := (f3,..., f&) and a sequence 0 < t,,, < 1 and we want to construct
weak greedy approximation from D, simultaneously to all N functions. For a given F' we
are looking for an element G € Dy of a special form

(31) G:= G(F g) = (51975295 .- 75Ng)a gc Da

Z| V2 i=1,..,N.

For G of the form (3.1) the operatlon
F,:=F— (F,G)G
means the same operation performed coordinatewise
fi=r-(gg i=1,..,N.
We note that

N N
(3.2) IFlloy = sup D (Fgna] = (O I1F1%) "
a::ﬁah,...,la]\r) i=1 i=1
alle=

g1,--,gNED
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Lemma 3.1. For any F € Hy we have

SlelPI(F \G(F,9))| > max || f'|p > N V?||Flip,.
g

Proof. On the one hand,

N
i 1/2
sup |(F, G(F, 9))| = sup (>_ [(f,9)%)"/
(3.3) 9€D 9€D =1
> max sup (f )] = maXHf [E>8
geD
and on the other, by (3.2),
N . 1/2 .
(3.4) IFllpy = O IF %) < N2 max || f*]| -

Combining (3.3) and (3.4), completes the proof of Lemma 3.1. [

Given a weakness sequence 7 = {t;}72 ;. The upper estimate for the VWGA, namely,
for vazl || £ T||?, can be obtained by Lemma 3.1 from the corresponding upper estimate

for the WGA with the weakness sequence 7/ := {t, N~1/2}2 . Actually we do better, we
formulate two theorems which are valid for VWGA and for both SWGA1 and SWGA2.

Thus let s stand for either v or sl or s2.

Theorem 3.1. Let D be an arbitrary dictionary in H. Assume T := {t;}32; s a nonin-
creasing sequence. Then for any vector of elements f*,... , fN, fi€ Ay(D),i=1,...,N,

we have
N e
ST < NP+ D8 )ani/tten
i=1 k:l

Corollary 3.1. Let D be an arbitrary dictionary in H. Assume T := {ty}32,, tr = t,
k>1,0<t<1. Then for any vector of elements f,... fN, fie Ay(D),i=1,...,N,

we have
N

< N2(1 + mt?/N) 3725

i=1
Note that for s = v, Corollary 3.1 coincides with Theorem 1.4.

Proof. The proof follows from Theorem 1.1 and Lemma 3.1, when we observe that f¢ €

Ai(D),i=1,...,N implies (f1,..., fN) € A(Dn,N). O

A similar proof yields
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Theorem 3.2. Assume that for the weakness sequence T = {t;}32, there are a natural
number n and a real number 0 <t <1 such that

(I+1)n
nt Y B>t 1=0,1,2,....
k=In+1

Then for any 0 < 3§ <1 and all f* € Ay(D),i=1,...,N,

N
SOUIFTE < N2 (3n/6%) T (14 12) T
=1

with r:=t(1 — §)N~1/2.

We are in a position to discuss the convergence of the VWGA, SWGA1, and SWGA2.
We denote by V the class of all sequences z = {z,}72,, x > 0, k =1,2,..., for which there
exists a sequence 0 = qp < q; < ... such that,

S

;Aqs < 00,

where Ags := qs — qs_1, and

oo qs
Z 27° Z Th < oo.
s=1 k=1

Remark 3.1. It is clear from this definition that if z € ¥V and for some K > 1 and ¢ we
have 0 <y < czg, k> K, then y := {yr}32; € V. The following theorem has been proved
in [40].

Theorem 3.3. The condition T ¢ V is necessary and sufficient for the convergence of the
Weak Greedy Algorithm with a weakness sequence T, for each f and all Hilbert spaces H
and dictionaries D.

It is clear from Theorem 3.3 that the condition 7 ¢ V is also necessary for convergence
of the VWGA, SWGA1, and SWGA2 with the weakness sequence 7. It has been proved in
[30] that this condition (7 ¢ V) is also sufficient for the convergence of the VWGA. We note
that 7 = {t,} ¢ V implies 7' := {t,N~'/2} ¢ V. Thus Theorem 3.3 combined with Lemma
3.1 implies the following generalization of Theorem 3.3.

Theorem 3.4. The condition T ¢ V is necessary and sufficient for the convergence of each
of the algorithms VWGA, SWGA1, SWGA2 with a weakness sequence T, for each vector of
elements f,..., fN, N arbitrary, and all Hilbert spaces H and dictionaries D.

Theorems 3.1 and 3.2 give estimates for the )Y -norm of the residual vector (|| fL1],..., | £N]).
We wish to introduce greedy type algorithms that yield estimates for the /Y -norm of the
residual vector. We define the Alternating Weak Greedy Algorithm for N elements (AWGA).
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Again, it differs from the VWGA only at the first step (out of three) of each iteration. Let
t € (0,1]. At the mth iteration, m = [N + i, in the first step of the AWGA
1.(AWGA) We look for any ¢%7 € D satisfying

(T omh| >t fot D

It is clear that for each i any realization of the AWGA for the ith component f? can be
viewed as a realization of the WGA with the weakness sequence 7% := {t} }2° |,

. {1, k=IN+i, 1=0,1,2,...,
tk:

0 otherwise.

Theorem 3.5. Given f' € A;(D),i=1,...,N, the AWGA yields the estimates
Ifinll> < (BN?/6%)za(1+1) 5%, 0<d<1, 1<i<N,

with a = (1 — §)N~1/2.
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